
3.4 Multiplicative Functions

Question how to identify a multiplicative function? If it is the convolution
of two other arithmetic functions we can use

Theorem 3.19 If f and g are multiplicative then f ∗ g is multiplicative.

Proof Assume gcd (m,n) = 1. Then d|mn if, and only if, d = d1d2 with
d1|m, d2|n (and thus gcd (d1, d2) = 1 and the decomposition is unique).
Therefore

f ∗ g(mn) =
∑

d|mn

f(d) g
(mn

d

)

=
∑

d1|m

∑

d2|n

f(d1d2) g

(

m

d1

n

d2

)

=
∑

d1|m

f(d1) g

(

m

d1

)

∑

d2|n

f(d2) g

(

n

d2

)

since f and g are multiplicative

= f ∗ g(m) f ∗ g(n)

�

Example 3.20 The divisor functions d = 1 ∗ 1, and dk = 1 ∗ 1 ∗ ... ∗ 1
convolution k times, along with σ = 1∗j and σν = 1∗jν are all multiplicative.

Note 1 is completely multiplicative but d is not, so convolution does not
preserve complete multiplicatively.

Question, was it obvious from its definition that σ was multiplicative? I
suggest not.

Example 3.21 For prime powers

d(pa) = a+1 and σ(pa) =
pa+1 − 1

p−1
.

Hence

d(n) =
∏

pa‖n

(a+1) and σ(n) =
∏

pa‖n

(

pa+1 − 1

p−1

)

.
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Recall how in Theorem 1.8 we showed that ζ(s) has a Euler Product, so
for Re s > 1,

ζ(s) =
∏

p

(

1−
1

ps

)−1

. (7)

When convergent, an infinite product is non-zero. Hence (7) gives us (as
already seen earlier in the course)

Corollary 3.22 ζ(s) 6= 0 for Re s > 1.

Thus for Re s > 1 the inverse 1/ζ(s) is well-defined and writing it as an
Euler Product gives

1

ζ(s)
=

∏

p

(

1−
1

ps

)

=
∞
∑

n=1

µ(n)

ns
,

where the arithmetic function µ is found by multiplying out the infinite
product.

Definition 3.23 Möbius Function µ(1) = 1 and for n = pa11 pa22 ...parr > 1,
written as a product of distinct primes, then

µ(n) =

{

(−1)r if a1 = a2 = ... = ar = 1,

0 if some ai ≥ 2.

Note
∞
∑

n=1

µ(n)

n2
=

1

ζ(2)
=

6

π2
,

from the result for ζ(2) seen in Chapter 1.

It is easily seen that µ is multiplicative, but do convince yourself.

3.5 Möbius Inversion

Recall the definition of δ as δ(n) = 1 if n = 1, 0 otherwise. Thus Dδ(s) = 1
for all s ∈ C. We also have

1 = ζ(s)
1

ζ(s)
= D1(s)Dµ(s) = D1∗µ(s)
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for Re s > 1. Hence Dδ(s) = D1∗µ(s), i.e.

∞
∑

n=1

δ(n)

ns
=

∞
∑

n=1

(1 ∗ µ) (n)

ns
(8)

for such s.

Important Observation In this course we have not proved that if
DF (s) = DG (s) for some domain of s then F = G.

This means that we can not conclude δ = 1 ∗ µ from (8). Instead I say
that (8) “suggests” δ = 1 ∗ µ and we need to prove it true by alternative
methods. Since both sides of the equality are multiplicative functions it
suffices by Corollary 3.16 to prove equality on prime powers.

Important For a prime power

f ∗ g(pr) =
∑

d|pr

f(d) g

(

pr

d

)

.

Yet the only divisors d of pr are of the form pk with 0 ≤ k ≤ r, thus

f ∗ g (pr) =
∑

0≤k≤r

f
(

pk
)

g
(

pr−k
)

=
∑

a+b=r

f(pa) g
(

pb
)

. (9)

We will use either of these without comment.

Theorem 3.24 Möbius Inversion

1 ∗ µ = δ,

i.e.
∑

d|n

µ(d) =

{

1 if n = 1

0 otherwise.

In other words, since δ is the identity under ∗ then µ is the inverse of 1
under ∗.

Proof The two functions 1 and µ are both multiplicative and thus, so is 1∗µ.
Since multiplicative functions are given by their values on prime powers it
suffices to show that 1 ∗ µ (pr) = δ (pr) for any prime p and all r ≥ 1.

If r = 0 then p0 = 1 and both 1 ∗ µ (1) = 1 and δ (1) = 1.

13



If r ≥ 1 then

(1 ∗ µ) (pr) =
∑

d|pr

µ(d) =
∑

0≤k≤r

µ
(

pk
)

by (9) ,

=
∑

0≤k≤1

µ
(

pk
)

since µ
(

pk
)

= 0 for k ≥ 2,

= µ(1) + µ(p)

= 1− 1

= 0 = δ(pr) .

�

The following is also often called Möbius Inversion and looks more general
than the previous result - but it is not!

Corollary 3.25 For arithmetic functions f and g we have

f = 1 ∗ g if, and only if, g = µ ∗ f.

Proof (⇒) If f = 1 ∗ g then

µ ∗ f = µ ∗ (1 ∗ g)

= (µ ∗ 1) ∗ g since ∗ is associative

= δ ∗ g

= g

(⇐) I leave the implication in the other direction to the student. �

To give us arithmetic functions with which to give examples illustrating
future results:

Definition 3.26 An integer n is square-free if no square divides n. In

fact, it suffices that no square of a prime divides n, i.e. p|n⇒ p2 ∤ n.

Alternatively, if n = pa11 pa22 ...parr , distinct primes, then no ai ≥ 2.

Define Q2 (n) = 1 if n square-free and 0 otherwise.

An integer n is k-power free, or simply k-free if p|n ⇒ pk+1 ∤ n.
Alternatively, if n = pa11 pa22 ...parr , distinct primes, then no ai ≥ k.

Define Qk(n) = 1 if n is k-free and 0 otherwise.
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Careful, this notation is not universal. Also, Q2(n) is often written as
|µ(n)| or µ2(n) . There are no such alternatives for Qk(n) when k ≥ 3. It is
easily seen that Q2 and Qk are multiplicative, but convince yourself.

The definition can be extended to k = 1, for the only integer that is
1-free, i.e. divisible by no first power of a prime, is n = 1. Thus Q1(n) = 1
if n = 1, 0 otherwise, i.e. Q1 = δ.

Aside The definition of the Möbius function can be written as

µ(n) =

{

(−1)ω(n) if n is square-free,

0 otherwise.

The form (−1)ω(n) suggests defining a further arithmetic function.

Definition 3.27 The Liouville Function λ is defined by λ(1) = 1 and

λ(n) = (−1)Ω(n)
for all n ≥ 2.

This is multiplicative since Ω is additive, and λ(pr) = (−1)r for all powers
of primes. This function is used a lot in the Problem Sheet to the section.
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